
ASYNCHRONOUS DISTRIBUITED.. (U) MASSACHUSETTS INST OF
:j TECH CAMBRIDGE LAB FOR COMPUTER SCIENEE. /127 M
U CLSSOIIV9RWRBCHETRA PR B? MIT/LCS/TM-32B / 1/

EmhhIhmh

-:M

* 9 9 9 1.90 9 99 / 9

LU

IA°

IL C ' (lt

LABORATORY FOR AL MASSACHUSETTS
INSTITUTE OF

COMPUTER SCIENCE TECHNOLOGY

MIT/LCS/TM-328

. APPROXIMATING THE SIZE OF A
U DYNAMICALLY GROWING

N ASYNCHRONOUS DISTRIBUTED NETWORK
'm,

Baruch Awerbuch

Serge A. Plotkin

DTIC
S ELECTEhDEC 0 7' 67D

April 1987

4S TECHNOLOGY SQUARE, CAMBRIDGE, MASSACHUSETTS 02139

Am ovD- fm W pUl tem
Distimon UnlinMied

REPORT DOCUMENTATION PAGE
4. IMPORT SECURITY CLASSIFICATION4 1b RESTRICTIVE MARKINGS

Unclassified
Zo. SECUSMT C.ASSIFICATION AUTHOITY 3 OISl**UT fAVAILAIUT REPORT

2b. DLAS iCATIOWOWNGRADONG SCHEDUtE Approved for public release; distribution
is unlimited.

4. PRWOMWAG ORGANIZATION REPORT NUMBER(S) 5 MONITORING ORGANIZATION REPORT NUMBER(S)
MIT/LCS / TM- 328 N00014-80-C-0622

60 NAME Of PERFORMING ORGANATION OFFICE SYMOL ?a NAME OF MONITORING ORGANIZATION
Laboratorv tor Computer (N e) Office of Naval Research/Department of Navy
Sc ence I

k. ADDRESS (Coy, Stte. dnd IPCodu) ?b ADORESS(City, StIe. mW Wo*)

545 Technology Square Information Systems Program

Cambridge, MA 02139 Arlington, VA 22217

So. NAME OF FUNDING SPONSORING l6b OFFICE SYMIO 9 PROCUREMENT INSTRUMENT IDENTIFICATON NUMBER
ORGANIZATION (Nf 8010CbOW)

DARPA/DOD
St. ADOORESS(Cy. St#e. nd ZICode) 10 SOURCE OF FUNDING NUMBERS

1400 Wilson Blvd. PROGRAM PROJECT TASK WORK UNIT
Arlington, VA 22217 ELEMENT NO I NACCESSION NO

11 TITLE (Oncrud Socwmy C/asu.Acato)m
Approximating the Size of a Dynamically Growing Asynchronous Distributed Network

12 PERSONAL AUTHOR(S)
Awerbuch, Baruch and Plotkin, Serge A.

13a TYPE OF REPORT 13b TIME COVERED 14. DATE OF REPORT (Y. Month.0Da) i s PAGf COUNT
technical IROM TO April 19877

16 SUPPIEMENTARY NOTATION

1? COSI CODES III117 COsATi COES 14 SUBJECT TERMS (Conieu on1 jvene of nmeffl ' ON ktwMl I /Ok fobr

FIELD GROUP SUB G-OUP" ->termination detection, leader election, r stributed

networks

79. ABSTRtACT {Coamw on reverie if nmcesnaw W deneify by block number)
4

~'We show how to approximate up to a constant factor the size of a dynamically growing
asynchronous distributed network. The technique presented in this paper has an amortized

message complexity of O(log 2IVI) per node, where IVI is the final size of the network.
This technique appears to be a useful primitive in constructing distributed algo-

rithms. In this paper we show how to apply this technique to construct an efficient
distributed algorithm for leader election in a faulty network. The algorithm has a message

complexity 0(IEj + lVjlog2jVi), which is an improvement of 0(log
2 lVj) over the previously

known algorithms.

i I

20 DISTRIBUTION /AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
Q UNCLASSIFIED/UNLIMITED 0 SAME AS RPT 0 DTIC USERS Unclassif led

22a NAME OF RESPONSIBLE INDIVIDUAL 2Zb TELEPONE (Inc/do Area Code) 22c OFFICE SYMBOL

Judy Little. Publications Coordinator (617) 253-5894
O FORM 1473.84 MAR 83 APR edetton may be used wWnI exhaustea SECURITY CLASSIFICATION Of THIS PAGEAll other tdobons are obsolit.

IL& Geomm oo" omm u1m1-v41

Unclassified

-,- U - -

Approximating the Size of a
Dynamically Growing

Asynchronous Distributed Network

Baruch Awerbuch* Serge A. Plotkin t

Laboratory for Computer Science
MIT

Cambridge MA 02139

5II GAII
DTIC TAN

Availability Codes
i vaii Sador

*Supported by the Air Force contract TNDGAFOSR-86-0078
tSupported by the Advanced Research Projects Agency of the Department of Defense under the

contract N00014-80-C-0622.

I t I

Abstract

We show how to approximate up to a constant factor the size of a dynam-
ically growing asynchronous distributed network. The technique presented in
this paper has an amortized message complexity of O(log 2 IVI) per node, where
lVi is the final size of the network.

This technique appears to be a useful primitive in constructing distributed
algorithms. In this paper we show how to apply this technique to construct an
efficient distributed algorithm for leader election in a faulty network. The algo-
rithm has a message complexity O(IEI + IVI log IVI), which is an improvement
of O(log2 IVI) over the previously known algorithms.

Keywords: termination detection, leader election, distributed networks.

1 Introduction

A situation that is often encountered in distributed algorithms is that the subnet-

work of nodes participating in the algorithm is dynamically growing. In some cases

new node is added to the subnetwork ater being activated by a message from a

node that is already in the subnetwork. In other cases a node is activated by some

asynchronous external event. In both cases it seems advantageous to be able to

approximate the size of the active subnetwork. A natural example is when we want

to terminate the algorithm when the subnetwork reaches certain size. Another ex-

ample is when we want to start a new iteration of some algorithm each time the

subnetwork grows by a constant factor.

In this paper we define the approximate counting problem which abstracts some

of the difficulties encountered in maintaining dynamically growing networks. Infor-

mally, the approximate counting problem is the problem of maintaining a constant

factor approximation to the size of the network. In this paper we show how to solve

this problem with an amortized message complexity of O(log2 IV I) per node, where

IVI is the final size of the network.

A problem similar to the approximate counting problem was independently in-

troduced by Afek and Saks [AS87]. Using their techniques it is possible to solve the

approximate counting problem with amortized message complexity of O(l,)g 3 IVI)

per node, which is worse by a factor of log IV" compared to our technique.

In this paper we show how to apply the approximate counting to efficiently

solve the problem of a leader election in a faulty network. The problem of find-

ing a leader is one of the fundamental problems in communication networks. It is

an imptrtant tool for breaking symmetry between processors executing the same

algorithm and allows application of highly centralized protocols in a completely

decentralized environment. We consider a problem of electing a leader in a faulty

network. The links of the network are assumed to be either up or down through-

out the execution of the algorithm. Without this assumption, the consensus in a

faulty asynchronous network is impossible, as it was shown in [FLP82]. As proved

in [FL84], fl(lE + IVI log IVI) messages are required for leader election in such a

network. A restricted case of leader-election on a ring was treated in [GS86], who

give a O(IEI + IVI log IVI) algorithm. The leader-election in general networks was

addressed in (BK86], who give an O(IV12) algorithm, and in [AS87].

In this paper we show how to apply the approximate counting technique to con-
struct an algorithm for leadcr election in a faulty network with message complexity

of O(IEI + IVI log2 IVI). We use a slightly weaker definition of the leader election

problem, compared to the definition used by Afek and Saks [AS871, who give an

O(IEI+ IVI log" IVI) message complexity leader election algorithm. Their algorithm,

adapted for our definition of the leader election algorithm, has message complexity

of O(IEI + IVIlog4 IVI).

Using our techniques together with the techniques introduced in 1AS87], it is

possible to achieve an O(IEI + VI log' IVI) message complexity algorithm for the

stronger notion of the leader election problem [AAPS87].

This paper is organized as follows. First, we describe the model and give com-

plexity measures. In section 3 we present the main technique that allows us to

solve the approximate counting problem on a dynamically growing tree. In section

4 we describe how to use the approximate counting on a tree to elect a leader in

a network with faulty edges. Section 5 present a more (etailcd description of the

2

',.' ,% , % . ,, ,.,. . .,... .. ;......,. ,.. . .,..,.% . -.. . .. ' ,, '.-' ,..;-," ... '....'- -. . , -,...., g., , ' '

iader-electiou algorithm. The correctness and the complexity of the leader election

algOwithm are addressed in sections 6 and 7.

2 The Model and Complexity Measures

We consider an asynchronous communication network [Awe85I. This is a p:int-to-

point (or store-and-forward) communication network, described by an undirected

communisction #mph G = (V, E), where the set of nodes V represents processors

of the network and the set of edges E represents bidirectional non-interfering com-

mumcation channels operating between neighboring nodes. No common memory is
shared by the node's processors and there is no notion of a global clock.

The following complexity measures are used to evaluate the performanc. of dis-

tributed algorithms. The Communication Complezity (C), is the worst case total

number of elementary messages sent during the algorithm, where an elementary

message contains at most O(log IV1) bits. The Time Complexity (T), is the max-
imum possible number of time units from the start to the completion of the al-

gorithm, assuming that the inter-message delay and the propagation delay of an
edge are at most one time unit. This assumptions are used only for the purpose

of evaluating the performance of the algorithm and can not be used to prove its

correctness, since the algorithm is event-driven.

3 Approximate Counting on a Tree

This section defines the approzimate counting on a tree (ACT) problem and presents

an algorithm to solve it with amortized message complexity of O(log2 IVI) per node.

The technique described in this section is the main building block for the leader-

election algorithm described in the subsequent sections.

The approximate counting on a tree problem is defined as follows. Assume that
in the beginning we have a network with no edges. New edges are asynch ronously

3

added to the network in such way that at every point in time the network consists

of a single tree and some isolated nodes. (By saying that a new edge is added we

mean that the endpoints are informed about the existence of this edge.) We say

that the appvximate counting on a tree (ACT) problem is solved if for every final

tree of size IVJ, the root of this tree will eventually know the value of IVI within a

given constant factor. In other words, the root of the tree will eventually come to a

conclusion that the size of the tree is at least IV'I, where 1 > iV'I/IVI _! c, for some

given constant c.

A straightforward solution to this problem is to communicate with the root each

time a new node is added to the tree. Though this solution has an optimal time

complexity of O(IVI), the message complexity is very large - O(1V12). The main idea

behind our algorithm is to trade of time for messages by delaying communication

with the root until 'enough' new nodes were added to the tree, and charge the

communication cost on the new nodes.

We will describe the algorithm in terms of waves of messages. Consider a set

S of connected nodes and assume there exists a spanning tree T of S with root

r. The wave is a special message generated by this root. It propagates through

the tree T until it reaches the leaves. A leaf returns this message to the node it

received it from. Each non-leaf node waits till it has received the message back

from all the nodes it has sent it to, and returns the message to the node it has

received it from. Conceptually, the wave sweeps the nodes in S. Note, that a wave

will eventually return to the root T. New wave can be generated only after the

first one has returned back to the initiating node. In the following description, we

use the Freeze wave. Any node that receives this wave suspends responses to any

message that comes from a node outside of S. Such message is saved in a special

queue and answered only after the Defreeze wave sweeps this node.

To make the presentation of the algorithm more uniform, we introduce the notion

of cluster. Cluster is a set of connected nodes. The node that is closest to the root
of the tree is the cluster-root, which governs the behavior of the nodes in the cluster.

A cluster-root knows ezactly the size of its cluster. Naturally, in the beginning, each

node is a cluster-root of a cluster of size 1.

4

.-J

N N - ~ pIre..

We have assumed that at any point the network consists of a tree and some

isolated nodes. Therefore each new edge connects the root of one cluster to some

node in another cluster. In this case we say that the first cluster is directly hooked
onto the second one. To simplify the description of the algorithm we introduce

the notion of approzimation property. We say that this property is violated at some

cluster if the total size of the clusters directly hooked onto it is more than a constant

factor larger than its own size.

The main part of the algorithm is to detect the violation of the approximation

property inside every cluster. It is clear that if we will sweep a cluster, counting
the size of all the clusters directly hooked onto it, each time the cluster-root will

discover that the approximation property is violated, any node will participate in

at most O(log IVI) sweeps, where IVI is the final size of the network.

To facilitate the propagation of information inside a cluster, we maintain the
following data structure. This data structure is initialized each time we sweep

the cluster with Count wave after the cluster-root has detected violation of the
approximation property. Denote the set of nodes in the cluster and in all the

clusters directly hooked onto it by S. Assume 2 - < ISI _< 2'. The nodes in S are

divided into at most 2 disjoint subsets of size at least 2i- 1, at most 4 disjoint subsets

of size at least 2i-2, e.t.c., where the node of a subset of size 2i that is the closest

to the cluster-root, will be denoted by masterj. We construct this data-structure
when the Count wave sweeps the tree on its way back to the cluster-root.

When node u gets back the reflection of the Count wave from all of its children, it

computes the array L. and sends it to its father v together with the Count message,

where Lu[i] is the maximum distance from any one of the descendants of u to

masteri, for all 1 < i < log IVI. Denote by E the edges of the tree. The node v

computes

L.[i] = max{L[i] I(u,v) E E) + 1; 1< i < logIVI.

If for some i, L,,i] > 2i, v will be masteri.

Note, that each node belongs to at least one and at most log IVI such subsets;

moreover from each node we can reach in at most 2i steps either the cluster-root

5

or some master,. Associate with every masteri the closest (up the tree) mauter+ 1 .

The data structure of masters, as defined above, embeds a new tree, which we call

the Collection/Ditribution Tree (CDT) inside the network. The depth of the CDT

is O(log IVI) and each edge between maeteri and master+1 has length of at most 2i

in the original tree.

After the construction of CDT, the algorithm proceeds by collecting reports

about the number of new nodes. We say that a report message carrying information

about k new nodes weights k units. Consider a cluster V', with cluster-root u

that is directly hooked onto another cluster V . Each time u detects that since

it has sent the last report its cluster size has increased at least twice, it sends

a new report message with weight that is the increment of its size since the last

report. Assume the increment was ISI. In this case the report will be sent to
master loIsj+os lolg ,4-los in CDT of cluster V4. This report is delayed by this

master until another report is received. In general, when masteri gets 2 reports, it

replaces them by a report with weight equal to the sum of the weights, and sends

it up the CDT to masteri+1 or to the cluster-root, whichever is closer. To inhibit

useless messages, a node will stop forwarding reports after it had forwarded a report

with weight equal or larger then the weight of the cluster it belongs to.

Every time a cluster-root receives a report of some weight, it updates the lower

bound on the number of nodes in the clusters directly hooked onto it. Every time

this lower bound exceeds some constant fraction a < 1 of the size of its cluster, the

cluster-root initiates a cluster-merge process. This process starts with cluster-root

generating a Freeze wave that sweeps all the nodes in the cluster. Then a Count

wave is generated by the cluster-root, creating the CDT and counting (exactly)

the number of nodes in clusters directly hooked onto the cluster. The cluster-roots

of these clusters cease to act like cluster-roots and this effectively merges them

together into the cluster that initiated the cluster-merge process. When the Count

wave returns to the cluster-root, it generates the Defreeze wave. Nodes receiving

this wave resume responding to all the messages.

Remark: The intuition for the above idea is due to Oded Goldreich IGo186). Assume

6

that we have a number of small trees hooked onto a larger one, (where by 'hooked'

we mean that there exists an edge from the root of the small tree to some node in the

larger one). Let every small tree send a message describing its size into the larger

tree, so that this message will be forwarded only number of times proportional to

the size of the smaller tree. If the paths of two such messages representing trees of

comparable size cross, we "combine" them into a larger message and send it -,brward

as if it was sent by a tree of twice the size. Conceptually, those trees are "paired".

Intuitively, in the "steady-state" there are not many messages 'stuck' in the large

tree and hence the root of the large tree has a good approximation on the size of

the trees hooked onto it.

We claim that if the approximation property is violated, a new Count wave will

be eventually generated by the root. Consider some cluster V,. with cluster-root r,

size IV I, lower bound on the size of the clusters directly hooked onto it IW,I, and

the actual size of the clusters directly hooked onto it IW;I. Let R be the root of the

tree and denote by IVI the total size of the tree.

Lemma 1 When the algorithm terminates, the root of the tree has a constant factor

approzimation on the size of the tree.

Proof: Assume that from some point on, no new Count wave will be generated.

From the description of the algorithm it can be seen that masteri can delay a report

that weights at most 2'a/ log IVI. There are at most IVI/2' masters at level i of

the CDT. The depth of the CDT is at most log IVI and hence the total weight of

reports delayed in the nodes of the CDT is at most aIV7I.

A cluster sends report each time its size increases by a factor of two. Hence, the

total weight of reports sent to V, is at least !jWt. Therefore the error W,'I - <

2oIV,I. On the other hand, W, < aVI because otherwise a new Count wave will be

eventually generated. and hence IW,'I < 3alvI.

I

In particular, for the duster whose duster root is the tree root R, we have:

IVi < F(3)'IVI
imo

< 1 IVRI1-3

I

Now we show that the message complexity of the algorithm is o(IVI log2 IlV).

Lemnm 2 The amortized mejalge complezity of the ACT algorithm is O(log 2 IVI)

per niode, whkere IVI is te jinal else of the tree.

Proof: Both FIeee and Def e waves use a constant amortized number of messages

per node. The Count wave uses O(log IVI) amortized number of messages per node.

Every time the Count wave sweep nodes in a cluster, the size of this cluster increases

by a constant factor and therefore there are at most O(JVI log2 JVJ) messages used

by these waves.

Consider all the reports sent in the situation when a larger (or equal size) cluster

is hooked onto a smaller (or equal size) cluster. Any node propagates only a single

message associated with one of these reports per increase by a constant fraction

(1 + a) in the size of the cluster this node belongs to. Hence, the total cost of these

reports is o(IV Ilog IV1).

Consider the rest of the reports. Charge the messages used by the report sent

by a cluster-root of some cluster onto the nodes whose weight is reported. Consider

a report that is sent by meter to maeter+n in some CDT. The cost of such report

is at most log IVl/a amortized over nodes charged for this report. On the other

hand, if a node was charged for this report once, the next time it will be charged

for a report the size of its cluster will be at least 2'+ '.

Hence, for every i, each node is associated with at most a single report from

maier to masteri+n in some CDT. There are at most IVl/2' reports of weight

8

'w~ ',.

2', 0 < i < log IVI + 1. Therefore reports use O(log2 IVt) messages amortized per

node in the final tree. 1

4 Overview of the Leader-Election Algorithm

This section presents an overview of the leader election algorithm. To simplify

the presentation, we may view this algorithm as two algorithms being executed

in parallel, where the local output of one is the local input to another. The first

algorithm constructs a spanning tree of the operational part of the network and the

second one maintains an approximation of the size of the tree, terminating t-.ie first

one when the size of some tree exceeds I VI.

We assume that each processor has a unique identification number (ID), repre-

sented as an integer O(log IVI) bits wide. Some of the network links are not oper-

ational, i.e. no messages can pass through in either direction. The status of a link

(operational or non-operational) is assumed to be fixed throughout the algorithm.

We confine ourselves only to event-driven algorithms, which do not use time-outs.

Hence, there is no possibility to determine that an edge is non-operational.

This model can be viewed as describing a situation in which a network was

damaged and the purpose of the algorithm is reorganize the network and choose a

new leader. The requirement that we do not rely on timeouts is reasonable in case

the ratio of the largest link-delay to the average link-delay is high.

We define the leader election problem as follows. At any node, the local input

to the algorithm consists of a list of adjacent network edges together with IVI,

the size of the network. Some of the links are not operational and there is no

prior knowledge about which of the edges are operational. Some component of size

'IV1(1+x) (0 < x < 1) of the network is guaranteed to be connected. For simplicity,

we assume in the future that all the network is connected, i.e. x = 1.

The algorithm is triggered at a different time instances at each node. The output

of the algorithm is produced locally at each node, not necessarily at the same time.

9

It consists of the ID of some node, which we will call the leader. All the nodes have

to choose the same leader.

To construct the spanning tree we use a variant of the Minimum-Spanning-Tree

(MST) algorithm, presented in [GHS831. This algorithm maintains a forest induced

by the edges known to be operational. The algorithm hooks the trees of the forest

one onto another, finally creating a single tree. The operation of each tree in the

forest is governed by its root.

The hooking operation of one tree on another may be viewed as a creation of

a new tree, with its root being the root of the second tree. Each tree is assigned

an integer, that is called the level and initially equals zero. A tree hooks itself onto

another tree only if the level of the second tree is greater or equal to the level of

the first tree. If the levels are equal, the level of the newly created tree is the level

of the parts plus one. To distinguish this cae from the case when a low-level tree

hooks itself on a higher-level one, we say that in this case a care was created. After

two (or more) equal-level trees are hooked together, the root of me of these trees

becomes the root of the new tree (we call such a root the cee-rvt). The unique

identification number of each node is used to break ties.

Informally, when a node detects that it has a link to another tree on at least the

same level, it propagates this information to the root of its tree. The root chooses

one of these links and initiates a hooking process. After the procs is completed,

the hooked tree is scanned and all the nodes are informed about the new level of the

tree. If a core was created, both trees are scanned, the nodes are infomed about

the new level, and the number of nodes in the newly created tree is counted.

The above spanning-tree algorithm is a non-terminating one, because a root of a

tree can never be sure that there exists no operational link between one of its nodes

and a node in another tree that is on at least the same level. Note, that when a

low-level tree hooks itself on a higher-level one, we do not inform the higher-level

tree about it, and hence the root of the newly created tree doe not know the exact

number of nodes in its tree. It is easy to see that counting the nodes in a tree after

each hooking operation results in an O(1V12) message-complexity algorithm. To

reduce the number of messages, we should inform the root only when the number

10

, . p . . . S S

of nodes in the tree increases by at least a constant fraction. Setting this constant

fractim to less then |, we can determine the termination of the algorithm - the

root of a tree in which there are at least -tVi nodes will declare itself a leader.

In order to maintain an apprmtin to the sise of its tree, each root executes

a variant of the apprudmate counting algorithm. The edges that the ST algorithm

has designated to be in the tree are considered to be the input to the approximate

counting algorithm. Every time a core is created, the root of the newly creaturd tree

restarts the approximate counting algorithm, the nodes in the tree being con:sidered

an a single duster. There is a minor difference between the algorithm executed by

emch root and the ACT algorithm described in section 3. In ACT algoritm any
new edge was between some cluster-root sad some other node. Here, when one tree

is hooked onto another tree, it corrmpnds to an edge that appears betwean two

nodes in different trees. The solution is straightforward. Every time one tree is

hooked onto another, it is trn re so that the pointers will point in the right

direction. Together with this trans-orm ion a new CDT is built.

5 Spanning Tree Algorithm

This section presents a more detailed description of the Spanning Tree algorithm,

which constructs a spanning tree in a network with faulty edges. This algorithm

can be viewed as a variation of the MST algorithm in [GHS83. The MST algorithm

can not be used unchanged because it works only for static networks. An algorithm

similar to the one described below was independently discovered by Afek and Saks

(AS87. In order to be able to use our approximate counting algorithm, we need a

somewhat different algorithm.

The local input to the ST algorithm consists of a list of adjacent links. Each

node starts the algorithm execution by sending one message through each at jacent

link. If a message was received through a link, a node assumes this link to be

operational. These messages arrive asynchronously and hence a node can never

be sure whether it has an operational link in addition to the ones it knows about

11

already.

The ST algorithm organizes the nodes into trees with tree-edges being the links
known so far to be operational. The operation of a tree is governed by its root.
The trees are hooked one onto another, finally producing a spanning tree of the
operational part of the network. We assume that each node has a distinct ID. The
ID of a root is considered to be the ID of its tree and is known to all the nodes in
the tree. Later we use the term 'node ID' as a shorthand for 'the ID of the root
this node belongs to'.

Initially, each node is a tree of level zero and the nodes are in the Find state.
In this state the operation of a node is very similar to its operation in the MST
algorithm, except that the Repart-Edge message is returned only after an acceptable
edge was found. More precisely, each operational link may be in one of 3 states:
Bauic, Rejected and Accepted. When a link becomes operational, it is in the Basic
state. In the Fid state, each node picks an adjacent Basic edge and sends a Test
mesge through it. If a node receives a Tet message, it responds as follows:

" If the message is from a node that belongs to the same tree, the Reject message
is returned and the edge is marked Rejected.

" If the message is hom a different tree, and the level of the receiving node is
greater than the level of the sending node or the levels are equal but the ID
of the receiving node is higher, the Accept message is returned.

" Otherwise, the receiving node does not reply until the preconditions of one of
the previous cases are satisled.

Upon acceptance of a Ree message, the node sends Test through the next Baic
edge, or waits till such an edge appears if there are no B.ic edges. Upon acceptance
of an Accept message, the node sends Report-Edge message to its father and changes its
state to Found. Note that the state of this edge was not changed. Upon acceptance
of a Rept-Edp message, the node propagates this message to its father, changes
its state to Feeed, and disregards all subsequent Reprt-Edg. messages.

When the root receives a Repect-Edg message containing information about a
link that leads to a tree with higher level, the root sends a message Take-the-Lead

12

to the node (the 'hooking node') that discovered this link (the 'hooking edge'), and

the hooking process is started. First, the hooking node freezes all the nodes in the

hooking tree by generating a wave of Freeze messages that propagates through all

the nodes reachable from the hooking node through the edges chosen to be in the

tree. After acceptance of such message, a node enters the Freeze state and suspends

responses to all messages from the outside the frozen tree until further notice. If the

wave reaches a node that has received a Report-Edge-Core message since the previous

Freeze wave, this information is propagated to its father. When this wave returns

to the the 'hooking node', it becomes the new root. If the wave brings information

that one of the nodes in the tree has received a Report-Edge-Core message, the level

is incremented. The hooking node generates Change-Pointers wave that sweeps the

frozen nodes, updates the direction of their pointers and informs them about their

new level and ID. Upon receiving the reflection of this wave back, the 'hooking

node' generates the Defreeze wave, changing the state of all the previously frozen

nodes to Find. The root of the hooked tree ceases to be a root and this completes

the hooking operation.

If the root receives information about a link that leads to a tree with the same
level but higher ID, it sends the message Take-the Lead to the hooking node u. The

node u sends Report-Edge-Core message through the hooking edge to node v in the

neighbor tree and designates this edge as one of the edges of the spanning tree. If v

is still in the Find state and its level is still equal to the level of the sending node, it

sends Report-Edge message to its father and changes its state to Found. If the level of

v-s tree is higher than the level of u-s tree, v returns a No-Core message to u and u

proceeds to behave exactly like the hooking node during regular hooking operation.

If the root receives information about a link that leads to a tree with the same
level but lower ID, it means that there is at least one tree on the same level that

hooked itself onto this tree. The root proceeds to generate Freeze, Change-Pointers and

Defreeze waves, behaving exactly like the hooking node during the regular hooking

operation.

13

6 Correctness of the Leader Election Algorithm

In this section we show that the leader-election algorithm is correct. First we

show that the ST algorithm described in section 5, produces a spanning tree of

the operational part of the network. Then we show that the approximate-counting

algorithm, described in section 3 detects when the size of a tree whose root is a

potential leader exceeds IVI, terminating the ST algorithm.

In order to show that the ST algorithm produces a spanning tree, we have to

show first that a node will return to the Find state from every other state. A node

leaves this state either when it finds a hooking edge, after it receives Report-Edge or

Report-Edge-Core message, or when the Freeze wave reaches it. If the Freeze wave was

the cause the node left the Find state, it will reenter this state eventually, because

the Freeze, Change-Pointers and Defreeze waves propagate independently of every other

activity, eventually returning every node on their path to the Find state. Heam, a

node will not return to the Find state only if it has left it because it has sent a

Report-Edge message and the Freeze wave has never reached it afterwards.

In case a Report-Edge message was sent, one of such Report-Edge messages will

reach the root. If the Report-Edge message that reaches the root contains a link to a

higher level tree, the Freeze wave will be generated and it will reach all the nodes in

the tree. If it contains a link to a node in a tree on the same level, and the Report-

Edge-Core reaches this node after its level changes, a regular hooking operation is

performed and again the Freeze wave will reach all the nodes in this tree. If the

chosen link leads to a node in a tree on the same level, and the Report-Edge-Cm

reaches this node before its level changes, a Rport-Edge message is generated. If

this message reaches the root, Freeze wave will be generated, covering all the nodes

in the trees.

The only case not covered so far is when the root of tree T, has sent Repor-Edts-

Core message to a node in T and the root of T2 has sent Report-Edgo-Core message

to a node in T3, and so on. By the construction, the Report-Edge-Core message is

sent only to nodes in trees with larger ID, and therefore there are no cycle in the

created waiting relation. Hence, there exists a tree Tk that its root has received a

14

Report-Edge message containing information about either a link to a tree on a higher

level or a link to a tree on the same level but lower ID. This root will create a Freeze
wave that will reach all the nodes in the trees T1,T2 ,. . Tk.

From the previous discussion it follows that a node will always return eventually

to the Find state. If there are two trees connected by an operational link, this link is

Basic. One of the end-points of this link is in the lower-level tree or in a tree with

smaller ID. This node will eventually enter the Find state, will discover this link,

and will Report-Edge it to its root. Therefore, as long as there exists an operational

link that connects two nodes that belong to two different trees, the algorithm can

not deadlock. Hence, eventually, the ST algorithm will find a spanning tree of the

network.

7 Complexity Analysis of the Leader Election Al-
gorithm

This section presents the message-complexity analysis of the leader-election algo-

rithm. Like the description of the algorithm, it is convenient to separate the com-

plexities of the ST algorithm and the complexity of the approximate-counting al-

gorithm.

The analysis of the messge-complexity for the ST algorithm is similar to the

analysis presented in [GHS83]. Each time the level of the tree is incremented by

one, the number of the nodes in this tree increases by at least a factor of two. Hence,

the number of levels is O(log IV1).

Every time a tree finds a hooking-edge, its level increases. In the worst case,

during this operation a tree edge is used to send the following messages.

1. The ReoWt-Edg message, reporting about an edge which is a candidate to be

a hooking edge.

2. Two messages for the propagation of the Frem wave.

3. Two messages for the propagation of the Chwqe-Poeiters wave.

-p . * p * p ~ ~ . -- * ',

4. Two messages for the propagation of the Def res wave.

5. A message Tak-th. L .

6. A menage Report-Edge-Coe.

Each operational edge can be rejected only once and each node in a tree can receive

at most one Accept message and send at most one Tet message between level incre-

ments. In addition, because of the cluster-merge process that runs in parallel with

the Change-Pointers wave, we use another O(log lVI) messages per node. Hence, for

each node, every time the level of the tree it belongs to increases, we use O(log IVI)

messages in the ST algorithm.

As it was mentioned in section 4, each time a tree is hooked onto another tree,

a new CDT is built in the first tree. The amortized cost of building the CDT

is O(log IVI) per participating node. On the other hand, each time a node can

participate only in O(iog IVI) hooking operations and hence the total amortised

cost for this operation is O(log2 IV1).

This concludes the proof that the message complexity of the leader election algo-

rithm is O(IVI log IVI).

Acknowledgments

Thanks are due to Oded Goldreich for collaboration in the earlier stages of the

research.

References

[AAPS87] Y. Afek, B. Awerbuch, S. Plotkin, and M. Saks. An O(V Ig3 V) algorithm

for leader-election in faulty networks. 1987. (Manuscript in preparation).

[AS871 Y. Afek and M. Saks. Detecting global termination conditions in face

of uncertainty. In Prec. of the ACM SrYWp..ium on Principles of Dis.

triuted Cemputiug, 1987. (To appear).

16

[Awe85] B. Awerbuch. Compleity of network synchronization. Journal of the

A CM, 32(4):804-823, October 1985.

[BK86] R. Bar-Yehuda and S. Kutten. Fault Tolerant Leader Election With

Termination Detection, in General Undirected Networks. Technical Re-
port CS-1986-2, Duke University, January 1986.

[FL84) G. Frederickson and N. Lynch. The impact of synchronous communica-
tion on the problem of electing a leader in a ring. In Proceedings of the
16'th A CM Symposium on Theory of Computing, April 1984.

[FLP82] M. Fischer, N. Lynch, and M Paterson. Impossibility of Distributed Con-

sensus with One Faulty Process. Technical Report LCS-TR-282, MIT,
1982.

[GHS831 R. G. Gallager, P. A. Humblet, and P. M Spira. A distributed algorithm
for minimum-weight spanning trees. ACM Transactions on Program-

ming Languages and Systems, 5(l):66-77, January 1983.

[Gol861 0. Goldreich. Private communication. 1986.

(GS861 0. Goidreich and L. Shrira. The effect of link failures on computations
in asynchronous rings. In Proc. of the ACM Symposium on Principles

of Distributed Computing, August 1986.

1?

OFFICIAL DISTRIBUTION LIST

Director 2 Copies
Information Processing Techniques Office
Defense Advanced Research Projects Agency
1400 Wilson Boulevard
Arlington, VA 22209

Office of Naval Research 2 Copies
800 North Quincy Street
Arlington, VA 22217
Attn: Dr. R. Grafton, Code 433

Director, Code 2627 6 Copies
Naval Research Laboratory
Washington, DC 20375

Defense Technical Information Center 12 Copies
Cameron Station
Alexandria, VA 22314

National Science Foundation 2 Copies
Office of Computing Activities
1800 G. Street, K.W.
Washington, DC 20550
Attn: Prograr Director

Dr. E.B. Royce, Code 38 1 Copy
Head, Research Department
Naval Weapons Center
China Lake, CA 93555

Dr. G. Hopper, USNR 1 Copy
NAVDAC-OOH
Department of the Navy
ashington, DC 20374

I 16iV I-W -II

4.

fg 'I.

S

IC
~

* V
~.1~ j~m,

IC
fr,

